
The Journal of Supercomputing, 34, 181–199, 2005
C© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

A General Performance Model of Structured and
Unstructured Mesh Particle Transport Computations

MARK M. MATHIS mmathis@lanl.gov
DARREN J. KERBYSON djk@lanl.gov
Performance and Architecture Laboratory (PAL), Los Alamos National Laboratory, CCS-3, P.O. Box 1663,
Los Alamos, NM 87545

Abstract. The performance of unstructured mesh applications presents a number of complexities and subtleties
that do not arise for dense structured meshes. From a programming point of view, the handling of unstructured
meshes has an increased complexity in order to manage the necessary data structures and interactions between
mesh-cells. From a performance point of view, there are added difficulties in understanding both the processing
time on a single processor and the scaling characteristics when using large-scale parallel systems. In this work we
present a general performance model for the calculation of deterministic SN transport on unstructured meshes that
is also applicable to structured meshes. The model captures the key processing characteristics of the calculation
and is parametric using both system performance data (latency, bandwidth, processing rate etc.) and application
data (mesh size etc.) as input. A single formulation of the model is used to predict the performance of two quite
different implementations of the same calculation. It is validated on two clusters (an HP AlphaServer and an
Itanium-2 system) showing high prediction accuracy.

Keywords: performance modeling, performance analysis, high performance computing, SN transport, unstruc-
tured meshes, parallel processing, large-scale systems

1. Introduction

Performance modeling is an important tool that can be used by a performance analyst to
provide insight into the achievable performance of a system and/or an application. Indeed, it
is only through knowledge of the workload that a system is to be used for that a meaningful
performanc analysis can be made. It has been recognized that performance modeling can
be used throughout the life-cycle of a system, or of an application, from first design through
to maintenance [6] including procurement and system installation.

Recent work at Los Alamos National Laboratory (LANL) has demonstrated the use of
performance modeling in many situations, for instance: in the early design of systems;
during the procurement of ASCI purple (expected to be a 100-Tflop system to be installed
in 2005); to explore possible optimizations in applications prior to implementation [5];
and to verify the performance of the 20-Tflop ASCI Q system during its installation [8]
(which ultimately lead to system optimizations resulting in a factor of 2 performance im-
provement [15]). Models have also been used to compare large-scale system performance
including a comparison of several of the highest peak-rated terascale systems such as the
Earth Simulator [7] and BlueGene/L [1] with ASCI Q.

In this work we present the development and use of a model that accurately captures
the performance characteristics of deterministic SN transport on unstructured as well as

182 MATHIS AND KERBYSON

structured meshes. This calculation solves the first-order form of the steady-state Boltzmann
transport equation. It is representative of applications that use a high percentage of the total
cycles across the ASC (Accelerated Strategic Computing) machines.

Unstructured meshes have benefits over structured meshes in terms of representing the ge-
ometry being processed, but result with significant extra overhead in terms of performance.
Several important performance factors that can reduce the overall calculation efficiency of
this type of computation on large-scale parallel systems are analyzed in this paper.

Efforts devoted to the performance analysis of SN transport date back many years. Re-
search has included the development of analytic performance models as a function of prob-
lem mesh and machine size [9]. More detailed performance models have been developed
that also include detailed communication [2], and SMP cluster characteristics [3]. Further
work has considered different partitioning schemes [10], but all use an underlying struc-
tured mesh in their analysis. Particle transport has also been used in empirical performance
evaluation studies (e.g., [19]).

The key contribution of this paper is the development of a general analytical perfor-
mance model of SN transport computations on unstructured meshes. The model is shown
to be applicable across different implementations including an experimental code under
development at LANL called Tycho [13], and a production code called UMT2K [18] from
Lawrence Livermore National Laboratory (LLNL) as well as being backwardly compatible
with the existing performance model of the structured mesh code, Sweep3D [17]. Tycho is
written in C++, and UMT2K is written in a combination of Fortran and C. UMT2K was
part of the benchmark suite used in the recent procurement of ASCI purple. Other codes
are also being developed for SN transport computations e.g. [16].

The analytical model developed here is shown to have reasonable accuracy in a validation
process using a 64-node HP AlphaServer system and a 32-node Itanium-2 cluster. We
concentrate on the development and the validation of the model in this work. However, the
accuracy of the model is such that it may be used to explore many performance scenarios,
for instance to examine the achievable performance that could be obtained on hypothetical
future architectures and also to indicate the size of mesh that could be processed in a given
time.

This paper represents an extension of work presented in [11]. Our previous work shows
that a model for an abstract algorithm can work equally well for different implementations
of the same solution. To that end, we have expanded the discussion of the two applications
presented here. Furthermore, we demonstrate that the model for unstructured meshes can
be reduced to a model for structured meshes. This analysis shows that the model for sweeps
on structured meshes is indeed a sub-case of the unstructured mesh model. Finally, we
cross-validate one of the codes on a different system. This further illustrates the flexibility
of our modeling approach.

The paper is organized as follows. In Section 2, the SN transport calculation is described
and comparisons between its operation on structured and un-structured meshes are made. In
Section 3 the key processing characteristics are detailed which are used in the development
of the performance model in Section 4. The model is validated in Section 5 on a number
of different input unstructured meshes that represent different physical geometries for both
Tycho and UMT2K.

PERFORMANCE MODEL OF TRANSPORT COMPUTATIONS 183

2. Overview of SN transport algorithms

The algorithms employed in deterministic SN transport (discrete ordinates) computations
fall in a class generically named wavefront techniques. In a nutshell they utilize an iter-
ative approach using a method of “sweeping”. Each spatial cell in a mesh is processed
for each direction in the discrete ordinates set. The wavefronts (or sweeps) are software
pipelined in each of the processing directions. Wavefront algorithms exhibit several interest-
ing performance characteristics, related to the pipelined nature of the wavefront dynamics.
These include a pipeline delay across processors for a sweep, and a repetition rate of both
computation and communication in the direction of the sweep.

In the case of a structured mesh, a high processing efficiency can be achieved as all active
processors perform the same amount of work, and communicate the same sized boundary
data in each processing step. However, the efficiency when using unstructured meshes is
lower due to a possible imbalance of work across processors as the wavefronts progress. The
processing flow of the calculation is described below for both structured and unstructured
meshes.

2.1. The method of sweeping

Structured meshes. In three-dimensions, each sweep direction can be considered to orig-
inate in one of the eight corners (“octants”) of the spatial domain. For a typical discrete
ordinate order of 6, i.e. S6, the total number of sweep directions is 48 or 6 per octant. For
sweep directions within each octant, the ordering of cell processing on a structured mesh is
identical. Figure 1(a) shows the first six steps of two separate sweeps at different angles, �,
originating from different quadrants for a two-dimensional spatial domain. The edge of the
sweep corresponds to a wavefront and is shown as black. Cells on the sweep edge require
the grey cells to have been processed in previous steps. The same operation can take place
in three dimensions resulting in a wavefront surface. The wavefront propagates across the
spatial domain at a constant calculation velocity since the time needed to process a cell is
constant. This processing algorithm as developed in [9], uses direct indexing of the spatial
mesh as the cell processing order is deterministic for each sweep direction.

Unstructured meshes. An example two-dimensional unstructured mesh consisting of tri-
angles is depicted in Figure 1(b). Two sweep directions are again used to illustrate the
processing over a total of six steps. As before, the cells being processed in the current step
are shown as black and require the previously calculated grey cells. The processing order
of the cells is dependent on the direction of the sweep, and is not the same for sweeps that
originate in the same octant (as was the case for structured meshes). The incoming data to a
cell are determined by the mesh geometry, and it is apparent that the propagation speed of
the wavefronts also varies with direction. The same situation occurs with three-dimensional
geometries, only with the mesh being composed of tetrahedrons, pyramids, hexahedrals
and prisms.

184 MATHIS AND KERBYSON

Figure 1. Example sweep processing in two dimensions for structured (a) and unstructured (b) meshes.

2.2. Sweeping in parallel

Parallel wavefront computations exhibit a balance between processor efficiency and com-
munication cost. Faster wavefronts, generated by a data decomposition leading to small
subgrid sizes per processor, introduce higher communication costs but result in high pro-
cessor utilization. The opposite holds true for slower moving sweeps due to larger subgrid
sizes. In order to optimize wavefront dynamics, SN transport applications typically uti-
lize blocking of the spatial subgrid, the wavefront angle set, and/or energy group set (if
applicable).

Structured meshes. In codes such as Sweep3D which perform an SN transport compu-
tation on a structured 3-D mesh, the mesh is mapped onto a logical 2-D processor array
such that each processor has a column of data which can be blocked to improve parallel
efficiency. The processing is effectively synchronized after the first sweep has moved across
the processor array resulting in all processors being active. The processing involved in each
sweep is dependent on the block size (a known constant). Thus one diagonal of the logical
2-D processor array will be processing one sweep (or one block in the third mesh dimension)
while the previous diagonal is processing the next sweep and so on as shown in Figure 2(a).
The direction of sweep travel is again indicated by � and inter-processor communications
shown by arrows.

Unstructured meshes. The processing on an unstructured mesh can follow the same de-
pendency rules as above, but the mesh partitioning is typically done in all three dimensions.
An example 2-D unstructured mesh partitioned in both dimensions is shown in Figure 2 (b).

PERFORMANCE MODEL OF TRANSPORT COMPUTATIONS 185

Figure 2. The pipeline effect of processing sweeps in parallel for structured (a) and unstructured (b)
meshes.

The communication between processors is shown by arrows, and a simplified propagation
of the sweep in the indicated direction is shown by the grey lines. A sweep for each direction
(angle) is required. The unit of computational work can be considered as a single cell-angle
pair.

The processing on an unstructured mesh can also be blocked—up to a set maximum num-
ber of cell-angle pairs can be processed per step. This blocking is analogous to the blocking
in the third dimension in the case of the structured mesh. However, it can result in processor
inefficiency down the pipeline—there is no guarantee that the same number of cell-angle
pairs will be processed by all processors in a step resulting in possible processor idleness.

3. Processing characteristics of SN transport

The main characteristics of SN transport on structured and unstructured meshes are:

mesh partitioning The mesh partitioning strategy will determine the number and location
of processor neighbors and hence communication costs for boundary data transfer. The
partitioning may also cause load imbalance for unstructured grids since the number of
cells that can be processed in each step on each PE may be different.

pipeline processing A processor is inactive until the edge of a sweep enters cells in that
processor’s partition. However, multiple sweeps may be active at any given time in the
processor array. Overlap exists between computation and communication within each
sweep, and across the active sweeps.

processor utilization The processing dependency in the direction of each sweep may
lead to downstream PEs waiting for the upstream PEs to send the necessary boundary
information. This situation can lead to processors being starved of work waiting for the
results from other PEs.

strong scaling SN transport calculations may be executed in a strong scaling mode. This
causes a change in the actual use of the memory hierarchy since the number of cells per
processor will decrease while increasing the number of processors used.

186 MATHIS AND KERBYSON

An understanding of these factors is required in order to formulate a performance model.
There are differences between structured and unstructured meshes as well as between im-
plementations (e.g., the Tycho and UMT2K implementations considered in this work).

3.1. Mesh partitioning

The common approach in the structured case is to use a logical 2-D processor array, thus
partitioning a 3-D mesh into “columns”. While counter to the traditional domain decom-
position approach (which seeks to minimize boundary area), this strategy works well due
to the directional dependences imposed by the sweep. The communication pattern induced
by this partitioning strategy can be seen in Figure 3(c).

In the unstructured case the partitioning is not done directly by the application, rather the
Metis partitioner [4] is used. This mesh partitioner aims to produce equally sized partitions
(equal number of cells) while minimizing boundaries. In general such an optimal parti-
tioning of the mesh keeps the work across processors constant and minimizes the commu-
nication cost. However, due to the pipeline processing and load-balancing characteristics

Figure 3. Example communication traffic for UMT2K (a), Tycho (b) and Sweep3D (c).

PERFORMANCE MODEL OF TRANSPORT COMPUTATIONS 187

in Tycho and UMT2K as well as SN transport in general, this partitioning may not be
optimal.

For a 3-D partitioning produced by Metis, the number of cells per partition can be taken
to be E p = N/P where N is the total number of cells in the mesh, and P is the number of
PEs (which is equal to the number of partitions). Each 3-D partition would ideally have six
nearest neighbors (equal to that of a 3-D partitioned structured mesh) each with a boundary
size of E2/3

p cells. This essentially approximates the unstructured mesh to a structured one.
The manner in which the mesh is partitioned across processors will determine the re-

sulting communication pattern of the application. The communication matrices in Figure 3
illustrate the effect of this approach for a 16 processor example. The existence of com-
munication between processors indicates that they share a boundary and must therefore
communicate with each other. Note that adjacent cells in the mesh are not necessarily lo-
cated on logically adjacent processors. Since both unstructured mesh applications use Metis,
it is not surprising that the two applications have similar, though not identical communica-
tion matrices. The shading in Figure 3 is used to illustrate the relative number of messages
between communicating processors.

However, the number of communications per iteration will depend on the application.
For example, Tycho implements true sweeps, communicating boundary data as needed
(generating up to 64 messages per iteration in this case). UMT2K, on the other hand, only
communicates once per iteration. This requires UMT2K to use old boundary information
in some cases (if updated values are not yet available). This compromise can increase
communication efficiency (by sending fewer messages) at the cost of potentially increasing
the time to convergence. Likewise, the size of the messages will vary. In both cases, the
maximum message size is approximately the same (about 3200 words). However, a larger
percentage of the messages sent in UMT2K tend to be large messages while the reverse is
true for Tycho.

3.2. Pipeline processing

The first cell-angle pairs processed in Tycho are those that lie on the boundary of the overall
spatial mesh—those cells that have no inflows in the direction of the sweep. This corresponds
to nearly all boundary elements. The sweeps thus generally start from the surface of the
mesh and work their way to the center before propagating out to the opposite side of the
mesh.

The dynamics of the pipeline is determined by the pipeline length and by the amount of
computation done on each mesh partition. The pipeline length is determined by the number
of stages in the propagation of the sweep from one side of the mesh to another. In the 2-D
example shown in Figure 2(b) the number of grey lines represent the number of stages. In
general, given an ideal 3-D mesh partitioning, the pipeline length is given by:

PL = (Px − 1) + (Py − 1) + (Pz − 1) (1)

where Px , Py and Pz are the number of PEs in each of the three dimensions respectively and
P = Px ∗ Py ∗ Pz . The total work done, or the total number of cell-angle pairs processed,

188 MATHIS AND KERBYSON

in each mesh partition in an iteration of the SN transport computation is equal to:

Wp = E p ∗ N�

where N� is number of sweep directions. For a specific mesh, the pipeline length, P ′
L can

be obtained by inspection of the mesh after the partitioning has been performed. P ′
L is

equal to the maximum number of PEs traversed in any sweep direction and will in general
be greater than PL . The total amount of work done per partition remains as above. Both
Tycho and UMT2K allow sweeps in multiple directions to be processed in parallel (using
a multithreaded sweep kernel).

It is worth noting some characteristics of the pipeline length with respect to structured
meshes. Equation (1) represents a lower bound on the pipeline length. It is also precise
for a structured or regular input mesh. This is the special case previously examined in [2].
The common approach in the structured case is to use a logical 2-D processor array, thus
partitioning the mesh into columns and decreasing the basic pipeline length to Px + Py −1.
This still assumes that all sweeps start simultaneously which is usually not the case. Pairs
of directions originating in the same column are processed together (pipelined) and the
consecutive directions are processed sequentially.

In actual fact, consecutive directions are overlapped such that subsequent directions
may start as soon as possible, without waiting for previous directions to completely finish.
This somewhat complicates the expression for pipeline length. Pairs of directions sharing a
column are processed together so the delay is only 1. Consecutive ‘up’ and ‘down’ directions
require Py − 1 steps. Likewise, the ‘down’ to ‘up’ transitions take Px + Py − 2 steps. So,
the actual pipeline length in the structured mesh case is:

PL = 2Px + 4Py − 6 (2)

To the pipeline length the number of steps taken in the steady state (Nsweep) must be added.
This is the product of the number of octants, angle blocks, and k-plane blocks:

Nsweep = 8 ∗ N�

a
∗ K

Kz

where a is the angle blocking factor, K is the size of the grid in the Z dimension, and Kz is
the K -plane blocking factor. Eight is the number of distinct ordinates. By substitution, the
total number of steps for the structured grid case is:

Nsteps = Nsweep + 2Px + 4Py − 6 (3)

3.3. Processor utilization

Each step in both Tycho and UMT2K consists of three stages: process the cell-angle pairs
which have available their in-flow boundary data, send boundary data that is produced, and

PERFORMANCE MODEL OF TRANSPORT COMPUTATIONS 189

receive boundary data from neighbor sub-grids. In the performance model we assume that
these stages are separated by barriers (see Figure 5). As we have shown in Section 3.1
this is an accurate representation of what happens in UMT2K, but only approximates the
processing flow in Tycho.

The processing situation is complicated by the processing dependence between upstream
and downstream cells in the sweep directions. This dependence may lead to downstream
PEs waiting for the upstream PEs to send the necessary boundary information. In general
there will be a degree of inefficiency in this operation and processors will be starved of
work waiting for the results from other PEs. It is interesting to note that for the case of
structured meshes, the work on each PE is equal throughout and thus the processors are fully
utilized once the pipeline is filled. To quantify this inefficiency, the Parallel Computational
Efficiency, PCE [13], is used:

PCE = Wp
∑Nsteps

S=1 maxP (‖work(P, S)‖)

where work(P, S) is the number of cell-angle pairs processed on processor P in step S, and
Wp is the total number of cell-angle pairs processed on each processor in an iteration. PCE
represents the fraction of the maximum number of cells that are processed in all steps in an
iteration. When PCE = 1, the parallel efficiency is 100%—this can only occur on a small
processor run (typically < 9 PEs) or on structured meshes. The lower the value of PCE, the
greater the inefficiency.

A value for PCE can be obtained for a specific mesh after its partitioning and before the
SN transport calculation. The number of work steps required to perform the total number
of cell-angle pairs per PE is given by:

Nsweep = Wp

(MCPS ∗ PCE)

where MCPS is the maximum number of cells that can be processed in a step. In the general
case, i.e. without pre-inspection of the mesh, a value for PCE has to be assumed—possibly
based on experience from prior meshes. This assumption can be inaccurate reflecting the
tradeoff between generality and accuracy that is present in performance modeling work.

Figure 4 illustrates the number of cells processed on each of 16 processors, up to MCPS in
each step of the computation. The height of each column indicates the actual number of cells
processed on each processor in each step. In general, the boundary processors (e.g., PEs
6–9) will be able to process close to MCPS cells at the beginning and end of the iteration.
Likewise, interior processors (all others) will be able to process close to MCPS cells in the
middle of the iteration once the sweep wavefronts have reached them.

3.4. Strong scaling

SN transport calculations on unstructured meshes may be executed in a strong scaling mode
i.e. parallelism is used to solve the same problem but in reduced time. The input mesh
geometry does not change and thus partitions become smaller on larger processor counts.

190 MATHIS AND KERBYSON

Figure 4. Parallel computational efficiency.

Strong scaling causes a change in the actual use of the memory hierarchy when increasing
the number of processors used and hence its performance has to be carefully considered.
For instance when a mesh partition becomes small enough to fit in cache the performance
will be better than if main memory has to be accessed.

Figure 6(a) shows the computation time per cell for a number of different meshes and
partition sizes for Tycho an 833 MHz Alpha EV68 processor and Figures 8(a) and 7(a)
show the performance of UMT2k on a 1 GHz Itanium-2 processor and an 833 MHz Alpha
EV68 processor respectively. The Alpha EV68 has an 8 MB L2 cache and the Itanium-2
used has a 3 MB L3 cache. In each case there are three regions evident: when the partition
does not fit into cache (right hand plateau of the curves), when the mesh fits into cache
(left hand plateau), and when partial cache re-use occurs (middle region). Note that there
is also a further parameter in the case of UMT2K which is the number of energy groups
that are processed per cell. This can vary and increases the processing time per cell by a
multiplicative factor as shown in Figures 8(a) and 7(a). The number of energy groups in
Tycho is fixed at one. Table 1 lists the analytical form of the time per cell for the model
curves shown in Figures 6(a), 7(a), and 8(a).

Table 1. Time per cell for each validation configuration

Tycho/AlphaServer ES40 Te(E p, G)(µs) =

G ∗ 9.2 E p ≥ 16 K

G ∗ (1.8Ln(E p) − 8.4) 800 < EP < 16 K

G ∗ 3.7 EP ≤ 800

UMT2K/Itanium-2 Cluster Te(E p, G)(µs) =

(3 + G) ∗ 0.14 E p ≥ 50 K

(3 + G) ∗ (0.02Ln(E p) − 0.09) 12 K < EP < 50 K

(3 + G) ∗ 0.11 EP ≤ 12 K

UMT2K/AlphaServer ES40 Te(E p, G)(µs) =

(1 + G) ∗ 0.0224 E p ≥ 340 K

(1 + G) ∗ (0.0028Ln(E p) − 0.0136) 10 K < EP < 340 K

(1 + G) ∗ 0.012 EP ≤ 10 K

PERFORMANCE MODEL OF TRANSPORT COMPUTATIONS 191

There is some variation in performance when using different meshes in this analysis due
to the different memory access patterns and hence the actual cache reuse. It can be seen
that a good approximation to the the time taken to process a cell can be encapsulated in a
piece-wise linear model. In general however, we are interested in large meshes - those that
unfortunately will not exhibit cache re-use, and also those that cannot be executed on small
processor counts due to limitations in the size of the actual memory per processor.

4. Analytical performance model

In the performance model of SN transport computations we assume that the three stages that
constitute a processing step are distinct and do not overlap—those of computation, blocking
sends and blocking receives for the boundary communications. Further the model also takes
the maximum of the amount of work performed in each step over all processors, as well
as the maximum of the communications performed to/from any one node. This scenario is
illustrated by Figure 5. This assumption will tend to give an over prediction of the iteration
time. The model for the time of a single iteration is formulated as:

Ti =
(

Nsteps∑

S=1

max
P

(Work(P, S))

)

.Te

(
N

P
, G

)

+
Nsteps∑

S=1

max
P

(‖Nc(S,P)‖∑

C=1

Tc(Nc(S, P, C), Ns(S, P, C))

)

(4)

where the first term represents computation and the second term communication. There are
Nsteps steps per iteration with Work(P, S) cell-angle pairs being processed on processor P
in step S. The time to process x cell-angle pairs for G energy groups is given by Te(x, G).
Nc(S, P, C) is the destination PE for communication C in step S on processor P and
Ns(S, P, C) is the size of the same communication. ‖Nc(S, P)‖ is the total number of
communications originating from processor P in step S. The time to communicate a message
of size y bytes to processor x is given by Tc(x, y).

The differences between the two SN transport implementations become apparent in the
way in which the parameters to this model are specified. The number of steps in general is

Figure 5. Load imbalance.

192 MATHIS AND KERBYSON

given by:

Nsteps = Nsweep + PL

For Tycho this is:

Nsteps =
(

WP

MCPS ∗ PCE

)

+ (Px − 1) + (Py − 1) + (Pz − 1)

where the first part of the equation represents the number of steps required to processes a
sub-grid given a value of PCE, and the second part is the length of the pipeline in 3-D. The
number of steps in UMT2K is given by:

Nsteps = N� ∗ noutmx

where N� is the size of the discrete ordinates set, and noutmx is the number of outer
iterations. This is independent of the pipeline length since UMT2K does not implement a
strict sweep operation—it uses old boundary data from the previous time-step which also
has the effect of making PCE = 1 if the partitioner produces equal sized partitions. It can
be considered as a simpler SN transport implementation than Tycho. It does not require
the same complexity in the handling of the boundary data flow which is reflected in the
difference in the time taken to process a single element shown in Figures 6(a) and 7(a).

The communications per step in both Tycho and UMT2K are approximated to be similar
to that of a partitioned structured 3-D mesh and remain constant throughout. This will in
general under predict the actual communication time. A structured grid has 6 local neighbors
resulting from a 3-D partitioning of a 3-D spatial grid. The size of the boundary on each
boundary surface is E2/3

p cells.
The parameters of Te(), and Tcomm() are specific to a particular system and are measured.

A two-parameter, piece-wise linear model for the communication is assumed which uses
the Latency (Lc) and Bandwidth (Bc) of the network communication.

Tcomm(S) = Lc(S, D) + S.
1

Bc(S, D)

where Lc is the communication latency, Bc is the communication bandwidth, and S is the
message size.

The communication time is subject to contention in the communication network. Our
experience using UMT2K and Tycho as well as other codes on clusters of SMPs, is that the
main contention occurs on the number of out-of-node communications that occur simultane-
ously. For example with the fat-tree interconnect of the Quadrics network [14], the number
of communications that collide in higher levels of the fat-tree is low due to dynamic routing.
The contention is taken into account by a multiplicative constant on the communication
time, Tcomm, which represents the number of simultaneous out-of-node communications.

PERFORMANCE MODEL OF TRANSPORT COMPUTATIONS 193

4.1. Performance model validation

The performance model described in Section 4 is validated on a 64 node AlphaServer ES40
cluster for both Tycho and UMT2K. We further cross-validate the performance of UMT2K

Figure 6. Time per cell (a) and model validations (b) for Tycho on the AlphaServer ES40.

194 MATHIS AND KERBYSON

on a 32 node Itanium-2 cluster. The Itanium-2 cluster consists of 2 processors per node
running at 1 GHz each with a 256 K L2 cache, a 3 MB L2 cache, and 2 GB main memory.
The AlphaServer cluster consists of 4 processors per node running at 833 MHz each with an
8 MB L2 cache and 2 GB main memory. The nodes in both the clusters are interconnected
using the Quadrics QSnet-I high speed network with Elan3 switching technology. The
performance characteristics of these systems are listed in Table 2.

Several unstructured meshes are used in the validation process. For UMT2K, the input
meshes consist of a 2-D mesh of triangles which are projected into the third dimension

Figure 7. Time per cell (a) and model validations (b) for UMT2K on the AlphaServer ES40.

PERFORMANCE MODEL OF TRANSPORT COMPUTATIONS 195

to form multiple layers of cells. For Tycho, the input meshes consist of a 3-D mesh of
tetrahedrals. Six mesh configurations are considered for UMT2K which arise fom two
different meshes which are projected by different amounts in the third dimension, and
also differ in the number of energy groups processed per cell. Four different meshes are
considered for Tycho. The tests are chosen to represent a range of partition sizes and are
listed in Tables 3 and 5.

Figure 8. Time per cell (a) and model validations (b) for UMT2K on the Itanium-2 cluster.

196 MATHIS AND KERBYSON

Table 2. Hardware parameters for both validation systems

Itanium-2 1GHz AlphaServer ES40 833 MHz

Lc(S)(µs)

6.48 S < 64B

8.21 64 ≤ S ≤ 256

17.1 S > 512

9.28 S < 64B

9.00 64 ≤ S ≤ 256

21.4 S > 512

1/Bc(S, D)(ns)

0.0 S < 64B

25.5 64 ≤ S ≤ 512

13.7 S > 512

0.0 S < 64B

22.7 64 ≤ S ≤ 512

11.2 S > 512

Table 3. Test cases for the validation of the Tycho performance model (alpha)

Case Mesh #Cells Description Error (%)

6 Nneut 43,012 Neutron well-logging tool and surrounding media 13.48
7 Silc 51,963 Computer Chip and packaging for radiation shielding 12.07
8 Reac 165,530 Reactor pressure vessel and surrounding cavity structures 7.44
9 Con test5 168,356 Cube divided into approximately equal-sized elements 8.07

Table 4. Test cases for the validation of the UMT2K performance model (alpha)

Case Mesh #Cells Description Error (%)

0 MMesh 680,400 Medium mesh, 4950 cells/layer, 3 layers, 1 energy group 9.74
1 SMesh 265,680 Small mesh, 398 cells/layer, 15 layers, 1 energy group 10.90
2 SMesh 265,680 Small mesh, 398 cells/layer, 15 layers, 2 energy groups 9.49
3 SMesh 53,136 Small mesh, 398 cells/layer, 3 layers, 1 energy group 16.94
4 SMesh 265,680 Small mesh, 398 cells/layer, 15 layers, 3 energy groups 8.86
5 MMesh 3,402,000 Large mesh, 4950 cells/layer, 15 layers, 1 energy group 11.31

Measurements and model predictions for the four test cases on Tycho are shown in
Figure 6(b) and for four of the test cases on UMT2K are shown in Figure 7(b). The cross-
hardware validation of UMT2K on the Itanium-2 cluster is shown in Figure 8(b). A summary
of the difference between the model predictions and the measurements is listed in the last
column of Tables 3, 4, and 5. It can be seen that the model predicts each case with high
accuracy with an average error of approximately 11% across all the test cases.

4.2. Structured meshes

Given Equation (4) it is possible to derive a model for the structured mesh case. First, the
max functions are not required since each processor is assigned an equal number of cells and
performs the same amount of work per step. Likewise, each processor has the same number
of neighbors and therefore the same amount of communication. This reduces Equation (4)

PERFORMANCE MODEL OF TRANSPORT COMPUTATIONS 197

Table 5. Test cases for the validation of the UMT2K performance model (ia64)

Case Mesh #Cells Description Error (%)

0 MMesh 680,400 Medium mesh, 4950 cells/layer, 3 layers, 1 energy group 12.53
1 SMesh 265,680 Small mesh, 398 cells/layer, 15 layers, 1 energy group 8.33
2 SMesh 265,680 Small mesh, 398 cells/layer, 15 layers, 2 energy groups 8.98
3 SMesh 53,136 Small mesh, 398 cells/layer, 3 layers, 1 energy group 11.41
4 SMesh 265,680 Small mesh, 398 cells/layer, 15 layers, 3 energy groups 8.87
5 MMesh 3,402,000 Large mesh, 4950 cells/layer, 15 layers, 1 energy group 9.06

to:

Ti =
(

Nsteps∑

S=1

I

Px

J

Py

K

Kz

N�

a

)

∗ Te

(
N

P
, G

)

+
(

Nsteps∑

S=1

4 ∗ Tc(Nc(S, P, C), Ns(S, P, C))

)

where I , J , and K are the three dimensions of the structured grid, Px and Py are the
dimensions of the 2-D processor grid, Kz is the plane blocking factor, N� is the total
number of angles and a is the angle blocking factor. We can simplify this by substituting

Tcpu = I

Px

J

Py

K

Kz

N�

a
∗ Te

(
N

P
, G

)

and

Tmsg = Tc(Nc(S, P, C), Ns(S, P, C))

giving

Ti = Nsteps ∗ (Tcpu + 4 ∗ Tmsg)

substituting for Nsteps from Equation (3) results with

Ti = (Nsweep + 2 ∗ Px + 4 ∗ Py − 6) ∗ (Tcpu + 4 ∗ Tmsg) (5)

One further refinement is required. Recall that boundary processors will each have two
neighbors while interior processors will each have four. As formulated, we assume that
every processor has four neighbors. To remedy this, we must separate Equation (5) into two
terms, one for pipeline fill steps and one for the steady state. Note that the pipeline length
is limited by the perimeter of the processor grid. It follows that these steps will involve
boundary processors with only two neighbors. This gives a final formulation of:

Ti = Nsweep ∗ (Tcpu + 4 ∗ Tmsg) + (2 ∗ Px + 4 ∗ Py − 6) ∗ (Tcpu + 2 ∗ Tmsg)

198 MATHIS AND KERBYSON

5. Summary

In this work we have presented a predictive analytical performance and scalability model for
SN transport computations on unstructured meshes. These calculations are representative of
a high proportion of cycles used across all ASC systems. Thus modeling and understanding
their performance is important not only on current systems, but also looking ahead to
possible larger scale systems in the future.

The performance model has been shown to be accurate with a typical error of 11% across
a range of configurations in terms of processor count, mesh geometry, and systems utilized.
Further, the model is shown to be applicable to two quite different implementations of these
types of computations. The implementations differ in their input meshes, and in the actual
type of SN transport calculation performed. The differences are handled by changing the
parameter inputs to the analytical performance model. It has also been shown that the model
also represents the performance of the simplier case of structured meshes.

We believe performance modeling is key to building performance engineered applica-
tions and architectures. This work is one of few performance models that exist for entire
applications. It follows on from our work on structured particle transport modeling [2],
adaptive mesh refinement modeling [5], and Monte-Carlo simulation [12].

Acknowledgments

We would like to thank Shawn Pautz for many informative discussions on the implementa-
tion details of Tycho. This work was supported in part by a Los Alamos LDRD 2001609DR
“Performance Analysis and Modeling of Extreme-Scale Parallel Architectures” and by the
Defense Advanced Research Projects Agency under the High Productivity Computing Sys-
tems Program. Mark Mathis is currently a PhD candidate at Texas A&M University and is
supported in part by a Department of Energy High Performance Computer Science Fellow-
ship. Los Alamos National Laboratory is operated by the University of California for the
U.S. Department of Energy under contract W-7405-ENG-36.

References

1. K. Davis, A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang, S. Pakin, and F. Petrini. A performance and
scalability analysis of the BlueGene/L architecture. In Proc. IEEE/ACM Supercomputing, Pittsburgh, PA,
2004.

2. A. Hoisie, O. Lubeck, and H. Wasserman. Performance and scalability analysis of Teraflop-scale parallel archi-
tectures using multidimensional wavefront applications. Int. J. of High Performance Computing Applications,
14(4):330–346, 2000.

3. A. Hoisie, O. Lubeck, H. Wasserman, F. Petrini, and H. Alme. A general predictive performance model for
wavefront algorithms on clusters of SMPs. In Proc. of ICPP 2000, pages 20–25, Toronto, Canada, 2000.

4. G. Karypis and V. Kumar. METIS 4.0: Unstructured Graph Partitioning and Sparse Matrix Ordering System.
Technical report, Department of Computer Science, University of Minnesota, 1998.

5. D. J. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasserman, and M. Gittings. Predictive performance and
scalability modeling of a large-scale application. In Proc. Supercomputing, Denver, CO, 2001.

6. D. J. Kerbyson, A. Hoisie, and H. J. Wasserman. Modeling the performance of large-scale systems. IEE
Proceedings (Software), 150(4):214–221, 2003.

PERFORMANCE MODEL OF TRANSPORT COMPUTATIONS 199

7. D. J. Kerbyson, A. Hoisie, and H. J. Wasserman. A performance comparison between the earth simulator
and other terascale systems on a characteristic ASCI workload. Concurrency and Computation, Practice and
Experience, 17(10):1219–1238, 2004.

8. D. J. Kerbyson, A. Hoisie, and H. J. Wasserman. Use of predictive performance modeling during large-scale
system installation. To appear in Parallel Processing Letters, 2005.

9. K. R. Koch, R. S. Baker, and R. E. Alcouffe. Solution of the first-order form of the 3D discrete ordinates
equation on a massively parallel processor. Transactions of the American Nuclear Society, 65:198–199, 1992.

10. M. M. Mathis, N. M. Amato, and M. L. Adams. A general performance model for parallel sweeps on orthogonal
grids for particle transport calculations. In Proc. ACM Int. Conf. Supercomputing (ICS), pp. 255–263, Santa
Fe, NM, 2000.

11. M. M. Mathis and D. J. Kerbyson. Performance modeling of unstructured mesh particle transport computations.
In Proc. ACM/IEEE Int. Parallel and Distributed Processing Symposium (IPDPS), Santa Fe, NM, 2004.

12. M. M. Mathis, D. J. Kerbyson, and A. Hoisie. A performance model of non-deterministic particle transport
on large-scale systems. In Proc. Int. Conf. on Computational Science (ICCS), LNCS, vol. 2659, pp. 936–945,
Melbourne, Australia, 2003.

13. S. D. Pautz. An algorithm for parallel sn sweeps on unstructured meshes. J. Nuclear Science and Engineering,
140:111–136, 2002.

14. F. Petrini, W. C. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The Quadrics Network: High-Performance
Clustering Technology. IEEE Micro, 22(1):46–57, 2002.

15. F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the missing supercomputer performance: Achieving
optimal performance on the 8,192 processors of ASCI Q. In Proc. IEEE/ACM SuperComputing, Phoenix,
2003.

16. S. Plimpton, B. Hendrickson, S. Burns, and W. McLendon. Parallel algorithms for radiation transport on
unstructured grids. In Proc. IEEE/ACM Supercomputing, Dallas, 2000.

17. The ASCI SWEEP3D README File. Available from: www.llnl.gov/asci benchmarks/asci/limited
/sweep3d/sweep3d readme.html

18. The UMT2K (UMT 1.2) README File. Available from: www.llnl.gov/asci/purple/benchmarks/ limited/umt/
umt1.2.readme.html

19. J. S. Vetter and A. Yoo. An empirical performance evaluation of scalable scientific applications. In Proc.
IEEE/ACM Supercomputing, Baltimore, MD, 2002.

